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Abstract. Symmetric nuclear matter is studied within the conserving, self-consistent T -matrix approxima-
tion. This approach involves off-shell propagation of nucleons in the ladder diagrams. The binding energy
receives contributions from the background part of the spectral function, away from the quasiparticle peak.
The Fermi energy at the saturation point fulfills the Hugenholz-Van Hove relation. In comparison to the
Brueckner-Hartree-Fock approach, the binding energy is reduced and the equation of state is stiffer.

PACS. 21.65.+f Nuclear matter

The calculation of nuclear matter properties from the
basic nucleon-nucleon interaction has been extensively
studied using Brueckner type resummation of ladder di-
agrams. This resummation allows to rewrite the ground-
state energy of nuclear matter using as an effective inter-
action, the G-matrix, which takes care of the short-range
repulsive core in the nucleon-nucleon interaction [1]. Cal-
culations using realistic interactions lead to results, which
lie along a line (the Coester line) shifted with respect to
the phenomenological saturation point (ρ0 � 0.16 fm−3,
E/N � −16 MeV). The remaining discrepancy can be at-
tributed to relativistic effects and three-body forces con-
tributions [2].

The results on the binding energy depend on the single-
particle energies used in the kernel of the Bethe-Goldstone
equation [3]. The so-called standard choice uses a self-
consistent auxiliary potential defined by the G-matrix
below the Fermi energy and the free dispersion relation
above kF. Another choice is to use the self-consistent po-
tential also above the Fermi momentum which gives the
so-called continuous choice for the single-particle energies
in the Bethe-Goldstone equation. In Brueckner-Hartree-
Fock (BHF) calculations the hole line expansion, irrespec-
tive of the choice of the auxiliary potential, is believed to
converge to values close to the BHF with the continuous
choice for single-particle energies [4].

Recently self-consistent approaches based on the in
medium T -matrix approximation for nuclear matter have
been studied [5–10]. In this way a spectral function for
nucleons in nuclear matter including two-particle corre-
lations is obtained. The ladder diagrams involved in the
calculation of the in medium T -matrix include also hole-
hole propagation. The T -matrix approximation takes into
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account some of the higher-order hole line contributions as
compared to the G-matrix approach. It would be instruc-
tive to study the saturation properties of nuclear matter
for the self-consistent T -matrix approximation with real-
istic interactions.

The T -matrix approach is a Φ-derivable approxima-
tion [11]. The self-energy is constructed as a functional
derivative of a set of two-particle irreducible diagrams.
This assures the fulfillment of thermodynamical relations
for the quantities obtained [9]. The most famous such a
relation is the equality of the Fermi energy and binding
energy at the saturation point [12]:

EF = E/N . (1)

The realization of the above relation is very important
since it would give confidence to the single-particle prop-
erties obtained in the calculations. In ref. [9] we studied
the self-consistent T -matrix approximation with a simple
interaction confirming to a very good accuracy the fulfill-
ment of thermodynamical relations by the numerical solu-
tions. In BHF calculations the Hugenholz-Van Hove rela-
tion is badly violated. This discrepancy can be reduced by
invoking rearrangement terms for the Fermi energy [13–
15]. By construction, the single-particle energies obtained
in the T -matrix approximation come out consistently with
thermodynamical observables. Thus we expect that single-
particle energies, scattering width or spectral functions di-
rectly obtained from the self-consistent T -matrix approx-
imation are meaningful [10].

For attractive interactions cold nuclear matter forms a
superfluid. Calculations using dressed propagators in the
superfluid phase show a strong reduction of the gap [7,16,
17]. We expect that around the saturation point the super-
fluidity is very weak [16]. This means that the correction
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from the superfluid correlation energy to the binding en-
ergy is small. We restrict ourselves to normal nuclear mat-
ter for all densities studied here. It allows us to compare
with BHF calculations which are performed exclusively in
the normal phase of nuclear matter.

The results here presented are obtained using a sep-
arable parameterization of the Paris potential [18] for S,
P , D and F partial waves, for symmetric nuclear mat-
ter. We use rank-3 and rank-4 parameterizations for the
1S0 and 3S1 −3 D1 partial waves. In the 3P0 partial wave
we use Mongan I interaction, in order to avoid unphysical
resonances far off-shell. In the numerical iteration the full
spectral function is discretized. For momenta close to the
Fermi momentum the spectral function is separated into
a background part and a quasiparticle peak approximated
by a delta-function. The numerical treatment of the en-
ergy integrations for the spectral functions is done using
convolution algorithms [10].

The T -matrix approximation resumes ladder diagrams
with dressed particle-particle and hole-hole propagators

〈p|T (P, Ω)|p′〉 = V (p,p′)

+
∫

dω1

2π

∫
dω2

2π

∫
d3q

(2π)3
V (p,q)A(p1, ω1)A(p2, ω2)

×
(
1 − Θ(µ − ω1) − Θ(µ − ω2)

)
Ω − ω1 − ω2 + iε

〈q|T (P, Ω)|p′〉 , (2)

where p1,2 = P/2 ± q. The imaginary part of the corre-
sponding retarded self-energy can be obtained closing a
pair of external vertices in the T -matrix with a fermion
propagator:

ImΣ(p, ω) =
∫

dω1

2π

∫
d3k

(2π)3
A(k, ω1)

×〈(p − k)/2|ImT (p + k, ω + ω1)|(p − k)/2〉A
×

(
Θ(µ − ω1) − Θ(ω + ω1 − 2µ)

)
, (3)

where

A(p, ω) =
−2ImΣ(p, ω)

(ω − p2/2m − ReΣ(p, ω))2 + ImΣ(p, ω)2
(4)

is the self-consistent spectral function of the nucleon. The
real part of the self-energy is related to ImΣ by a disper-
sion relation

ReΣ(p, ω) = ΣHF(p) + P
∫

dω′

π

ImΣ(p, ω′)
ω′ − ω

(5)

with ΣHF(p) the Hartree-Fock self-energy. Equations (2),
(3), (5) and (4) are to be solved iteratively and at each
iteration the chemical potential µ = EF is adjusted to
fulfill the condition on the density ρ

∫ µ

−∞

dω

2π

∫
d3p

(2π)3
A(p, ω) = ρ . (6)

The spectral functions obtained in the self-consistent
solution consist of a quasiparticle peak and a broad back-
ground (fig. 1). As function of momentum the position of
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Fig. 1. The spectral function A(p, ω) as a function of energy
for p = 0, 255 and 340 MeV (solid, dashed, and dotted lines
respectively).

the peak in the spectral function follows approximately
the quasiparticle dispersion relation

ωp =
p2

m
+ ReΣ(p, ωp) . (7)

The background of the spectral functions extend far from
the quasiparticle peak. The part of the spectral function
below the Fermi energy leads to nonzero occupancy for
momenta above pF and gives a large, negative contribution
to the binding energy for all momenta.

The nucleon momentum distribution

n(p) =
∫ µ

−∞

dω

2π
A(p, ω) (8)

is very different different from the Fermi-Dirac distribu-
tion. Momentum states below the Fermi momentum are
depleted and a tail in the distribution n(p) for large mo-
menta appears. The T -matrix approximation leads to a
Fermi-liquid behavior in the normal phase, with a jump in

the fermion density of ZpF =
(

1− ∂ReΣ(pF,ω)
∂ω |ω=EF

)−1

�
0.74 at the Fermi momentum. In the calculation the Fermi
momentum is fixed by the constraint (6) on the total den-
sity. For a conserving approximation the Fermi momen-
tum should be the same as the Fermi momentum of a free
fermion gas [19,11]. This thermodynamical consistency re-
lation is verified to a good accuracy by our calculations for
the range of densities studied.

The energy per particle, in the case of only two-body
interactions, can be obtained from the single-particle spec-
tral function

E/N =
1
ρ

∫ µ

−∞

dω

2π

∫
d3p

(2π)3
1
2

(
p2

2m
+ ω

)
A(p, ω) . (9)
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Fig. 2. The binding energy for the T -matrix (solid line) and
for the BHF (dotted line) calculations, and the Fermi energy
for the T -matrix (dash-dotted line) and for the BHF (dashed
line) calculations as functions of the Fermi momentum.

The binding energy per nucleon as a function of the Fermi
momentum is presented in fig. 2 for the self-consistent
T -matrix approximation and compared to results from G-
matrix calculations using the continuous choice of the aux-
iliary potential. The results of the T -matrix approach lie
above to the BHF binding energy for densities close to the
phenomenological saturation point. Since we know that
further hole line corrections do not modify the continuous
BHF results drastically, we get an assessment of the accu-
racy of the T -matrix approach. The higher the density the
larger the discrepancy becomes. Correspondingly the sat-
uration point in the T -matrix approach is shifted to lower
densities (ρ = 1.2ρ0 instead of 2.4ρ0) and lower binding
energies (the binding energy is reduced by 4 MeV at ρ0).
Very similar results are found for the equation of state of
pure neutron matter [17]. We note that the Hugenholz-
Van Hove condition (1) is very well satisfied.

The origin of the of the binding energy in the T -matrix
approximation can be understood writing eq. (9) as

E/N =
1
ρ

∫
d3p

(2π)3
n(p)

1
2

(
p2

2m
+ ωp

)
(10)

with
ωp =

∫ µ

−∞

dω

2π
ωA(p, ω)/n(p) , (11)

whereas in quasiparticle approaches it is

E/N =
1
ρ

∫
d3p

(2π)3
n(p)

1
2

(
p2

2m
+ ωp ,

)
(12)

which in the BHF scheme takes the form

E/N =
1
ρ

∫
p<pF

d3p

(2π)3
1
2

(
p2

2m
+ ωBHF

p

)
. (13)
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Fig. 3. The quasiparticle energy ωp (solid line) and the average
energy ωp (dashed line) (11) from the T -matrix calculation as
functions of momentum. The dotted line represents the BHF
single-particle energy ωBHF

p . The insert is a blow up of the
region around the Fermi momentum. It shows that ωBHF

p lies
below ωp. This gives more binding in the BHF approach.

The BHF single particle energy ωBHF
p is obtained from

the G-matrix potential and is different from the T -matrix
quasiparticle energy ωp and from the average energy ωp.
In fig. 3 we compare the removal energy ωp to the quasi-
particle energy ωp. Due to a large contribution of the back-
ground strength of the spectral function lying below the
quasiparticle peak the removal energy is much below the
quasiparticle energy. At momenta above pF the positive
contribution to the energy per particle from the kinetic
term in eq. (10) is largely compensated by a negative ωp.

The main contribution to E/N comes from momenta
below the Fermi momentum, similarly as in the BHF ex-
pression (13). As can be seen in the insert in fig. 3 the
average removal energy ωp is above the G-matrix single-
particle energy ωBHF

p . This has as a consequence a larger
binding energy in the BHF calculation. The difference be-
tween the binding energy in the two approaches is roughly
one-half of the average of ωp −ωBHF

p over momenta in the
Fermi sphere.

The single-particle energy ωp in the T -matrix approxi-
mation is generally above ωp. This explains why the Fermi
energy in the conserving T -matrix approximation is equal
to the binding energy at the local saturation point, follow-
ing the Hugenholz-Van Hove relation (1). The binding en-
ergy is determined by ωp and EF = ωpF for the T -matrix
calculation, whereas both quantities are determined by
ωBHF

p in the G-matrix scheme. Only in a completely quasi-
particle approximation, such as the Hartree-Fock approx-
imation, the binding energy and the Fermi energy are de-
termined by the same quasiparticle single-particle energy,
while still fulfilling thermodynamical consistency.
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This paper presents the first results of a self-consistent
T -matrix calculation of saturation properties of nuclear
matter with a realistic potential. The binding energy ob-
tained is smaller than the BHF result with the continuous
auxiliary potential. Smaller binding within the T -matrix
approach was obtained also in neutron matter [17] and
using a model potential [9]. This effect can be explained
by the fact that the T -matrix approach does not take
into account (negative) ring diagrams contribution to the
binding energy. This contribution cancels the (positive)
higher-order terms included in the T -matrix binding en-
ergy [4]. We note that a very similar shift in binding energy
is observed in a BHF calculation, when including the rear-
rangement terms contribution to the binding energy [15].
In ref. [15] by considering rearrangement terms corrections
to the single-particle energies and to the binding energy
an improvement of the fulfillment of the Hugenholz-Van
Hove relation is found. The same can be observed in the
T -matrix approach, we destroy a bit the binding energies
and improve considerably the single-particle energies from
the BHF approach to get the relation (1) right. We expect
that after inclusion of ring diagrams contributions, as well
as higher partial waves and three-body forces corrections,
the results on the saturation properties of nuclear matter
of modern BHF approaches will be recovered. The cal-
culation of these corrections is standard and not related
to the T -matrix approach. On the other hand, the real
advantage of the self-consistent T -matrix approximation
shows itself in the single-particle properties. The quasi-
particle energies lead to a Fermi energy consistent with
the Hugenholz-Van Hove relation. We confirm the ther-
modynamical consistency of the numerical solution of the
T -matrix scheme [9] for realistic interaction with several
partial waves. Finally let us note that the self-consistent
T -matrix calculation can be straightforwardly extended to
finite temperatures.

This work was partly supported by the KBN under Grant No.
2P03B02019.
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